Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Ecol Inform ; 71: 101809, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2007667

ABSTRACT

The COVID-19 pandemic that has hit the whole world has caused losses in various aspects. Several countries have implemented lockdowns to curb the spread of the SARS-CoV-2 virus that caused death. However, for developing countries such as Indonesia, it is not suitable for lockdown because it considers the economic recession. Instead, the Large-scale Social Restrictions (LSSR) regulation is applied, the same as the partial lockdown. Thus, it is hypothesized that implementing LSSR that limits anthropogenic activities can reduce heat emissions and air pollution. Utilization of remote sensing data such as Terra-MODIS LST and Sentinel-5P images to investigate short-term trends (i.e., comparison between baseline year and COVID-19 year) in surface temperature, Surface Urban Heat Islands Intensity (SUHII), and air pollution such as NO2, CO, and O3 in Malang City and Surabaya City, East Java Province. Spatial downscaling of LST using the Random Forest Regression technique was also carried out to transform the spatial resolution of the Terra-MODIS LST image to make it feasible on a city scale. Raster re-gridding was also implemented to refine the Sentinel-5P spatial resolution. The accuracy of LST spatial downscaling results is quite satisfactory in both cities. Surface temperatures in both cities slightly decreased (below 1 °C) during LSSR was applied (P < 0.05). SUHII in both cities experienced a slight increase in both cities during LSSR. NO2 gas was reduced significantly (P < 0.05) in Malang City (∼38%) and Surabaya City (∼28%) during LSSR phase due to reduced vehicle traffic and restrictions on anthropogenic activities. However, CO and O3 gases did not indicate anomaly during LSSR. Moreover, this study provides insight into the correlation between SUHII change and the distribution of air pollution in both cities during the pandemic year. Air temperature and wind speed are also added as meteorological factors to examine their effect on air pollution. The proposed models of spatial downscaling LST and re-gridding satellite-based air pollution can help decision-makers control local air quality in the long and short term in the future. In addition, this model can also be applied to other ecological research, especially the input variables for ecological spatial modeling.

2.
ISPRS International Journal of Geo-Information ; 10(3):133, 2021.
Article in English | MDPI | ID: covidwho-1125171

ABSTRACT

In this research, we analyzed COVID-19 distribution patterns based on hotspots and space–time cubes (STC) in East Java, Indonesia. The data were collected based on the East Java COVID-19 Radar report results from a four-month period, namely March, April, May, and June 2020. Hour, day, and date information were used as the basis of the analysis. We used two spatial analysis models: the emerging hotspot analysis and STC. Both techniques allow us to identify the hotspot cluster temporally. Three-dimensional visualizations can be used to determine the direction of spread of COVID-19 hotspots. The results showed that the spread of COVID-19 throughout East Java was centered in Surabaya, then mostly spread towards suburban areas and other cities. An emerging hotspot analysis was carried out to identify the patterns of COVID-19 hotspots in each bin. Both cities featured oscillating patterns and sporadic hotspots that accumulated over four months. This pattern indicates that newly infected patients always follow the recovery of previous COVID-19 patients and that the increase in the number of positive patients is higher when compared to patients who recover. The monthly hotspot analysis results yielded detailed COVID-19 spatiotemporal information and facilitated more in-depth analysis of events and policies in each location/time bin. The COVID-19 hotspot pattern in East Java, visually speaking, has an amoeba-like pattern. Many positive cases tend to be close to the city, in places with high road density, near trade and business facilities, financial storage, transportation, entertainment, and food venues. Determining the spatial and temporal resolution for the STC model is crucial because it affects the level of detail for the information of endemic disease distribution and is important for the emerging hotspot analysis results. We believe that similar research is still rare in Indonesia, although it has been done elsewhere, in different contexts and focuses.

SELECTION OF CITATIONS
SEARCH DETAIL